Embeddings play a key role in deep learning recommender models. They are used to map encoded categorical inputs in data to numerical values that can be processed by the math layers or multilayer perceptrons (MLPs). Embeddings often constitute most of the parameters in deep learning recommender models and can be quite large, even reaching into the terabyte scale. It can be difficult to fit…
]]>Deep learning recommender systems often use large embedding tables. It can be difficult to fit them in GPU memory. This post shows you how to use a combination of model parallel and data parallel training paradigms to solve this memory issue to train large deep learning recommender systems more quickly. I share the steps that my team took to efficiently train a 113 billion-parameter…
]]>NVIDIA Merlin is an open beta application framework and ecosystem that enables the end-to-end development of recommender systems, from data preprocessing to model training and inference, all accelerated on NVIDIA GPU. We announced Merlin in a previous post and have been continuously making updates to the open beta. In this post, we detail the new features added to the open beta NVIDIA Merlin…
]]>Recommender systems help people find what they’re looking for among an exponentially growing number of options. They are a critical component for driving user engagement on many online platforms. With the rapid growth in scale of industry datasets, deep learning (DL) recommender models, which capitalize on large amounts of training data, have started to show advantages over traditional…
]]>