NVIDIA Ampere GPU architecture introduced the third generation of Tensor Cores, with the new TensorFloat32 (TF32) mode for accelerating FP32 convolutions and matrix multiplications. TF32 mode is the default option for AI training with 32-bit variables on Ampere GPU architecture. It brings Tensor Core acceleration to single-precision DL workloads, without needing any changes to model scripts.
]]>Neural networks with thousands of layers and millions of neurons demand high performance and faster training times. The complexity and size of neural networks continue to grow. Mixed-precision training using Tensor Cores on Volta and Turing architectures enable higher performance while maintaining network accuracy for heavily compute- and memory-intensive Deep Neural Networks (DNNs).
]]>Double-precision floating point (FP64) has been the de facto standard for doing scientific simulation for several decades. Most numerical methods used in engineering and scientific applications require the extra precision to compute correct answers or even reach an answer. However, FP64 also requires more computing resources and runtime to deliver the increased precision levels.
]]>Most deep learning frameworks, including PyTorch, train using 32-bit floating point (FP32) arithmetic by default. However, using FP32 for all operations is not essential to achieve full accuracy for many state-of-the-art deep neural networks (DNNs). In 2017, NVIDIA researchers developed a methodology for mixed-precision training in which a few operations are executed in FP32 while the majority��
]]>Neural network models have quickly taken advantage of NVIDIA Tensor Cores for deep learning since their introduction in the Tesla V100 GPU last year. For example, new performance records for ResNet50 training were announced recently with Tensor Core-based solutions. (See the NVIDIA developer post on new performance milestones for additional details). NVIDIA��s cuDNN library enables CUDA��
]]>Autonomous driving demands safety, and a high-performance computing solution to process sensor data with extreme accuracy. Researchers and developers creating deep neural networks (DNNs) for self driving must optimize their networks to ensure low-latency inference and energy efficiency. Thanks to a new Python API in NVIDIA TensorRT, this process just became easier. TensorRT is a high��
]]>A defining feature of the new NVIDIA Volta GPU architecture is Tensor Cores, which give the NVIDIA V100 accelerator a peak throughput that is 12x the 32-bit floating point throughput of the previous-generation NVIDIA P100. Tensor Cores enable you to use mixed-precision for higher throughput without sacrificing accuracy. Tensor Cores provide a huge boost to convolutions and matrix operations.
]]>Deep Neural Networks (DNNs) have lead to breakthroughs in a number of areas, including image processing and understanding, language modeling, language translation, speech processing, game playing, and many others. DNN complexity has been increasing to achieve these results, which in turn has increased the computational resources required to train these networks. Mixed-precision training lowers the��
]]>Update, March 25, 2019: The latest Volta and Turing GPUs now incoporate Tensor Cores, which accelerate certain types of FP16 matrix math. This enables faster and easier mixed-precision computation within popular AI frameworks. Making use of Tensor Cores requires using CUDA 9 or later. NVIDIA has also added automatic mixed precision capabilities to TensorFlow, PyTorch, and MXNet.
]]>