Shashank Deshpande – NVIDIA 技術博客 http://www.open-lab.net/zh-cn/blog 閱讀開發者創建的最新技術信息、頭條新聞 和內容。 Tue, 01 Mar 2022 06:33:20 +0000 zh-CN hourly 1 196178272 利用 NVIDIA TAO 工具包和 Innotescus 進行遷移學習的策展數據 http://www.open-lab.net/zh-cn/blog/curating-data-for-transfer-learning-with-the-nvidia-tao-toolkit-and-innotescus/ Mon, 28 Feb 2022 06:23:00 +0000 http://www.open-lab.net/zh-cn/blog/?p=3103 Continued]]> 人工智能應用程序由機器學習模型提供動力,這些模型經過訓練,能夠根據圖像、文本或音頻等輸入數據準確預測結果。從頭開始訓練機器學習模型需要大量的數據和相當多的人類專業知識,這往往使這個過程對大多數組織來說過于昂貴和耗時。 遷移學習是從零開始構建定制模型和選擇現成的商業模型集成到 ML 應用程序之間的一種愉快的媒介。通過遷移學習,您可以選擇與您的解決方案相關的 pretrained model ,并根據反映您特定用例的數據對其進行再培訓。轉移學習在“定制一切”方法(通常過于昂貴)和“現成”方法(通常過于僵化)之間取得了正確的平衡,使您能夠用較少的資源構建定制的解決方案。 這個 NVIDIA TAO 工具包 使您能夠將轉移學習應用于預訓練的模型,并創建定制的、可用于生產的模型,而無需人工智能框架的復雜性。要訓練這些模型,必須有高質量的數據。 TAO 專注于開發過程中以模型為中心的步驟,

Source

]]>
3103
人人超碰97caoporen国产