人工智能工作流 – NVIDIA 技術博客
http://www.open-lab.net/zh-cn/blog
閱讀開發者創建的最新技術信息、頭條新聞 和內容。Tue, 27 Feb 2024 23:06:56 +0000zh-CN
hourly
1 196178272使用現已推出 Beta 版的 NVIDIA AI Workbench 來創建、共享和擴展企業 AI 工作流程
http://www.open-lab.net/zh-cn/blog/create-share-and-scale-enterprise-ai-workflows-with-nvidia-ai-workbench-now-in-beta/
Tue, 30 Jan 2024 03:49:20 +0000http://www.open-lab.net/zh-cn/blog/?p=8855Continued]]>NVIDIA AI Workbench 現已進入測試階段,帶來了豐富的新功能,可簡化企業開發者創建、使用和共享 AI 和機器學習 (ML) 項目的方式。在 SIGGRAPH 2023 上發布的 NVIDIA AI Workbench,使開發者能夠在支持 GPU 的環境中輕松創建、協作和遷移 AI 工作負載。欲了解更多信息,請參閱借助 NVIDIA AI Workbench 無縫開發和部署可擴展的生成式 AI 模型。 本文介紹了 NVIDIA AI Workbench 如何幫助簡化 AI 工作流程,并詳細介紹了測試版的新功能。本文還介紹了編碼副駕駛參考示例,該示例使您能夠使用 AI Workbench 在所選平臺上創建、測試和自定義預訓練的生成式 AI 模型。 借助 AI Workbench,開發者和數據科學家可以在 PC 或工作站上靈活地在本地啟動 AI 或 ML 項目,
]]>8855借助 NVIDIA TAO 為數萬億臺設備開發和優化視覺 AI 模型
http://www.open-lab.net/zh-cn/blog/develop-and-optimize-vision-ai-models-for-trillions-of-devices-with-nvidia-tao/
Wed, 06 Dec 2023 05:18:42 +0000http://www.open-lab.net/zh-cn/blog/?p=8409Continued]]>全球的開發者正在利用 NVIDIA TAO 工具套件 構建 AI 驅動的視覺感知和計算機視覺應用程序。現在,得益于該平臺的顯著增強和強大的生態系統支持,這一過程變得比以往更快、更簡單。 NVIDIA TAO 工具套件 支持超過 10 種計算機視覺和視覺 AI 模型,包括圖像分類、物體檢測、三種類型的分割、光學字符識別 (OCR)、動作識別、關鍵點估計、身體姿態估計、嵌入模型、連體網絡等。 TAO 工具套件的入門速度比以往更快,支持超過 NVIDIA NGC 上的 40 個預訓練模型。利用 TAO 的方法可以隨著用于調整各行各業模型的工作流而不斷擴展。如需了解詳情,請參閱 借助 NVIDIA TAO 和視覺 AI 模型變革工業缺陷檢測 和 自定義 AI 模型:使用 NVIDIA TAO 訓練角色檢測和識別模型。 TAO 的下載量已超過 10 萬次,
]]>8004NVIDIA AI Enterprise 4.0 推出,助力企業構建生產就緒的生成式 AI 為業務賦能
http://www.open-lab.net/zh-cn/blog/power-your-business-with-nvidia-ai-enterprise-4-0-for-production-ready-generative-ai/
Tue, 12 Sep 2023 05:30:28 +0000http://www.open-lab.net/zh-cn/blog/?p=7883Continued]]>生成式 AI 已經跨越鴻溝并達到“ iPhone 時刻”,現在必須能夠擴展以滿足指數級增長的需求。可靠性和正常運行時間對于打造企業級生成式 AI 至關重要,尤其是當 AI 成為業務運轉的核心時。NVIDIA 正在將專業知識投入到解決方案的開發過程中,助力企業實現這樣的飛躍。 最新版 NVIDIA AI Enterprise 助力利用生成式 AI 進行創新的企業加速開發,為企業提供生產就緒型支持、可管理性、安全性和可靠性。 生成式 AI 模型具有數十億個參數,需要高效的數據訓練管道。訓練模型的復雜性、針對特定領域任務進行定制以及大規模部署模型都需要專業知識和計算資源。 NVIDIA AI Enterprise 4.0 包括 NVIDIA NeMo,這是一個端到端云原生框架,用于大規模數據管理、大語言模型的加速訓練和定制,以及在用戶首選平臺上優化推理。
]]>7354使用 Superb AI Suite 和 NVIDIA TAO 工具包創建高質量的計算機視覺應用程序
http://www.open-lab.net/zh-cn/blog/create-high-quality-computer-vision-applications-with-superb-ai-suite-and-nvidia-tao-toolkit/
Mon, 12 Jun 2023 05:26:59 +0000http://www.open-lab.net/zh-cn/blog/?p=7223Continued]]>數據標記和模型訓練一直被認為是團隊在構建 AI / ML 基礎設施時面臨的最大挑戰。這兩個步驟都是 ML 應用程序開發過程中的關鍵步驟,如果做得不當,可能會導致結果不準確和性能下降。要了解更多信息,請參閱人工智能基礎設施聯盟的2022 年 AI 基礎設施生態系統報告。 數據標記對于所有形式的監督學習都至關重要,在監督學習中,整個數據集都被完全標記。它也是半監督學習的一個關鍵組成部分,半監督學習將一組較小的標記數據與設計用于以編程方式自動標記數據集其余部分的算法相結合。標記對計算機視覺至關重要,計算機視覺是機器學習中最先進和最發達的領域之一。盡管它很重要,但貼標簽的速度很慢,因為它需要擴大分布式人力團隊的規模。 除了標注之外,模型訓練是機器學習的另一個主要瓶頸。訓練很慢,因為它需要等待機器完成復雜的計算。它要求團隊了解網絡、分布式系統、存儲、專用處理器( GPU 或 TPU…